STACS
SOLUTIONS
ENGINEERING

Continuous Delivery with AWS
CodePipeline and ECS Fargate

HSTACS

Blockchain for Finance

FLSTNCS

Shape the future of Capital Markets gjockchain for Finance

PREFACE

The Hashstacs Solutions Engineering team has been building modern applications on the

cloud and we faced many challenges ranging from minimizing application downtime to
application scalability.

As we continue to deliver new product features and bug fixes, we have fine-tuned our
process on the AWS cloud to take advantage of managed services to reduce dedicated

manpower for devops and to enable rapid deployment from code to product.

In this article we would like to share our experience and know-how setting up a fully
automated Continuous Delivery workflow on the AWS cloud.

Author: Tracy Thanda Aye 1

FLSTNCS

Shape the future of Capital Markets gjockchain for Finance

CONTENTS
PREFACE ... oottt et e e e e e e e e e e e e e e s s annnnees 1
1 High Level Architecture DeSign.......cccoevvvvivviieiiiiiiiieeeeeieeeeeeev e, 3
1.1 Deployment from Source code to Containersccccoeeeeeenes 4
1.2 Setting up ECS Fargate with APl Gatewaycccccoeevevvvrneenennnnns 4
2 SettiNg UpP SEIVICES «.vvniiiieee ettt eae e eae e ea s 5
2.1 Load BalanCer ... 5
2.2 ECS o e e e e e e e e 7
2.3 APl GateWaAY ..cue i 10
3 CONCIUSION i e e e e e e e e 11

Author: Tracy Thanda Aye 2

FSINCS

Shape the future of Capital Markets gjoekchain for Finance

1 High Level Architecture Design

The following is a high level solution design encompassing the many services used for our
Continuous Delivery workflow.

We will split up the design into 2 separate portions:

1) Deployment of the source code as containers
2) Setup of the containers with APl Gateway for secured access by the end user client

(i)

Health check

E-; Codebuild
7> [l Rtk .

User Client ALB Auto-Scalling group policy

AP| Gateway
l k ECS Cluster Container J

Amazon
CloudWatch Logs

Listener

Amazon RDS

Author: Tracy Thanda Aye 3

FLSTNCS

Shape the future of Capital Markets gjockchain for Finance

1.1 Deployment from Source code to Containers

As AWS Elastic Container Service (ECS) is a fast, highly scalable managed service that
orchestrates and provisions Docker containers, we have chosen to use Fargate on ECS for
our final deployment of applications.

This first portion of our deployment setup primarily resides in AWS Code Pipeline which
covers the full range of activities from source code to containerized applications on ECS
Fargate.

As our version control system is managed on Github, for the application deployment
source code is first pushed to GitHub and pulled by AWS CodePipeline automatically via
web hooks.

After that, CodeBuild will be triggered to build and deploy the package into the AWS
Elastic Container Repository (ECR) as docker images where we track all versions of our
containerized application.

Finally, CodePipeline will pull the latest image from ECR and deploy on ECS Fargate.

Using ECS Fargate, a fully managed service, we can organise the state of containers which
are independently monitored, scaled up and down automatically, making sure the
minimum set of tasks are running based on demand which is an incredibly cost-efficient
solution that scales both up and down depending on real time demand.

1.2 Setting up ECS Fargate with APl Gateway

The second portion of our deployment setup is to connect our containerized applications
to APl Gateway where our application APIs can be fully managed and secured by API
Gateway.

1 of the key factors for using APl Gateway is the usage of AWS Cognito for authentication
and authorization of end users for each API that we deploy in ECS Fargate.

Author: Tracy Thanda Aye 4

FLSTNCS

Shape the future of Capital Markets gjockchain for Finance

Setting Up Services

In this section, we cover some of the key steps required to implement the Continuous Delivery
pipeline mentioned above.

Aside from the AWS Code Pipeline setup that we have previously written in a separate article,
the remaining setup on ECS Fargate and API Gateway will need to be setup in the following
order:

1. Setting up the Load Balancer
2. Setting up the ECS Cluster and Target Definitions for the container
3. Integration of the Load Balancer with API Gateway

2.1 Load Balancer

Load Balancer is the single entry from cloud/user which distribute all the incoming traffic across
multiple targets that are defined in the target group. You can create and define the security group
and target group while creating ALB.

Security group works quite similarly to a firewall, controlling all the incoming and outgoing traffic
which can define in inbound and outbound rules. The following diagram shown is simply an
example and is NOT a secured way to enforce incoming traffic.

Step 3: Configure Security Groups

A security group is a set of firewall rules that control the traffic to your load balancer. On this page, you can add rules to allow specific traffic to reach your load balancer. First, decide whether to create a new security group or select an existing one.

Assign a security group:

Security group name:

Description:

Type i

[Custom TCP Fv

Add Rule

@® Create a new security group

O Select an existing security group

Protocol (i Port Range i Source i

TCP 80 Custom v 0.0.0.0/0, ::/0

The target group tells the ALB where to route the traffic to and from while monitoring the health
check response from ECS.

Author: Tracy Thanda Aye 5

Shape the future of Capital Markets

FLSINCS

Blockchain for Finance

Step 4: Configure Routing

Your load balancer routes requests to the targets in this target group using the protocol ar

Target group

Target group

Name

Target type

Protocol

Port

Health checks

Protocol

Path

New target group

[

@® Instance
O
O Lambda function

HTTP

80

HTTP

/health

E2 > Torgetgowes > |

9 armiaws:easticloadbatancing:

Basic configuration

Target type Protocol : Port VPC
ip HTTP: 80]
Group details Targets Monitoring Tags
Health check settings
Protocol Unhealthy threshold
HTTP 2
Path Timeout
5
Port Interval
traffic-port 30

Healthy threshold
5

Author: Tracy Thanda Aye

Success codes
200

HSTINCS

Shape the future of Capital Markets B,ockcham for Finance

2.2 ECS

Task Definitions are an important part of ECS, it describes how a docker container should
launch (we choose Fargate as a launch type), and contains settings on defining how to launch
the docker containers, memory and CPU usages. For the container definitions, we are simply
using the latest docker image from ECR.

Task size 2]

The task size allows you to specify a fixed size for your task. Task size is required for tasks using the Fargate launch type and is optional
for the EC2 launch type. Container level memory settings are optional when task size is set. Task size is not supported for Windows
containers.

Task memory (GB) 1GB v

The valid memory range for 0.5 vCPU is: 1GB - 4GB.

Task CPU (vCPU) = 0.5 vCPU v
The valid CPU range for 1GB memory is: 0.25 vCPU - 0.5 vCPU.

Task memory maximum allocation for container memory reservation

7771111111

0 896 shared of 1024 MiB
Task CPU maximum allocation for containers

|VII|

512 shared of 512 CPU units

Container Definitions e
Add container
Container Nam... = Image Hard/Soft mem... CPU Unit... @ GPU Essential ...
‘.| true)

After creating Task Definitions, we create ECS cluster, is a group of services or tasks. Service
is the long running task of the Task Definitions, where you can add the ALB and can adjust the
number of running tasks depending on the requirement. At this point, the Code Pipeline
Deploy stage can be updated with the Service and Cluster information. Task (Fargate Task) is
the instance/running container defines in the task definition. This can be one or multiple tasks
depending on the traffic and auto scaling policy defined in the service.

Author: Tracy Thanda Aye 7

FLSINCS

Shape the future of Capital Markets gjoekchain for Finance

Launch type @ FARGATE EC2 (i)

Switch to capacity provider strategy (i]

Task Definition Family

RevisIo
-(Iatest) v

Platform version | LATEST v O

cusr [N - o

Load balancer None
type*

® Application Load Balancer
Network Load Balancer
Classic Load Balancer

Service |IAM role Task definitions that use the awsvpc network mode use the AWSServiceRoleForECS service-linked role,
which is created for you automatically. Learn more.

Q

Load balancer name | v

Container to load balance

I c0

Production listener port* create new v o

Production listener protocol* HTTP =
Target group name create new v _ 0

Target group protocol HTTP +

Author: Tracy Thanda Aye 8

FLSINCS

Shape the future of Capital Markets gjoekchain for Finance

i

Minimum number of tasks

Automatic task scaling policies you set cannot reduce the number of tasks below this number.

(i

Desired number of tasks

(i}

Maximum number of tasks

Automatic task scaling policies you set cannot increase the number of tasks above this number.

IAM role for Service Auto Scaling _ AN i)
Automatic task scaling policies
Scaling policy type @ Target tracking ()

Step scaling

ECS service metric* = ECSServiceAverageCPUUltilization v O

Configure an ALB for the service in order to enable target tracking on ALB metrics

Target value* - (i]

Scale-out cooldown period 300 seconds between scaling actions €@
Scale-in cooldown period 300 seconds between scaling actions @
Disable scale-in (i)

Author: Tracy Thanda Aye 9

FLSINCS

Blockchain for Finance

Shape the future of Capital Markets

2.3 API Gateway

After finished deploying the ECS and ALB, setup the load balancer DNS name in APl gateway.
The endpoint URL listed in the Integration Request of the APl Gateway should be the DNS name

of the load balancer.

Remember to deploy the APl in API Gateway once ready to see the effects.

Load balancer: | -

Description Listeners Monitoring Integrated services Tags

Basic Configuration

Name
ARN

DNS name

State
Type
Scheme

IP address type

.
@

[.2 mazonaws.com (2]
(A Record)

active
application
internet-facing

ipv4

€ Method Execution /-/{proxy+} - ANY - Integration Request

Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type O Lambda Function @

@ HTTP O

O Mock @

O AWS Service @
O VPC Link @

Use HTTP Proxy integration o

HTTP method ANY

Endpoint URL http:/_-1 .elb.amazonaws.com/-{proxy}

Content Handling Passthrough +' @

Use Default Timeout 40

Author: Tracy Thanda Aye

10

FLSINCS

Shape the future of Capital Markets gjoekchain for Finance

3 Conclusion

The current setup has allowed us to maintain full uptime of our applications without
requiring much manual interventions since ECS Fargate ensures that the desired number
of containers are deployed. Deploying upgrades to our containers also does not require
downtime since ECS only decommissions the older version once the new version is up
and running.

However, we do note that there are improvements to be made. The current architecture
is not fully automated yet as we need to create services manually for each new
application and service deployed. For this, we are looking into the use of template
(CloudFormation) or configuration (Terraform) to manage and implement infrastructure
as code which will be easy to maintain and also reusable.

We have barely scratched the surface of the ECS service and are looking forward to
explore more features that can enable us to deliver better features to serve our clients,
such as Blue green deployment to enable A/B testing of new features.

m CloudFormation .gﬂ Terraform

Covers almost all services Covers almost all services
and features provided by and features provided by
AWS. AWS.

Author: Tracy Thanda Aye 11

