
1

2

Contents

Rapid Prototyping with Serverless and Cloud Technology .. 3

Preface ... 3

1. Introduction ... 3

2. High Level Architecture Design ... 4

2.1 Frontend connectivity to the backend ... 5

DynamoDB .. 5

Lambda ... 6

API Gateway .. 7

2.2 Periodic Data Refresh .. 8

EventBridge .. 8

3. Lambda and DynamoDB Setup ... 10

4. Conclusion ... 11

3

Rapid Prototyping with Serverless and Cloud

Technology

Preface

Rapid prototyping is an essential skill for a team running on Agile and Scrum methodologies.

Focusing on the deliverables, utilising available resources, and managing substantial and

quick modifications requires some finesse — this is what STACS Solutions Engineering team

aims to achieve.

We have built and launched large enterprise applications running on top of our STACS

Blockchain platform. To be more agile, we have started researching rapid prototyping to

collect feedback and increase our feature release and bug fix Turn Around Time (TAT). In the

project we are about to present in this article, the focus is set on user interaction and

experience. We have found that serverless technology like AWS Lambda is well suited to

handle the backend processing which enables the team to focus on the User Experience (UX)

to provide a better quality of life for users. This article will share our experience on rapid

prototyping where we utilise the AWS cloud services to iterate our build quickly which has

been very cost-effective.

1. Introduction

Serverless technology such as AWS Lambda is very useful for basic computational

processes and being event-driven allows us to save cost on running full-blown servers for

applications that do not have heavy workloads.

This prototype application uses 4 AWS services in its backend architecture -

1. DynamoDB for unstructured data storage

2. Lambda for event-driven basic computation

3. API Gateway to manage API messages

4. EventBridge

We will look at the high-level architecture design, its use cases, why some of these
services were chosen and how they were implemented.

4

2. High Level Architecture Design

As the focus is on the serverless backend implementation of the project, let us take a deeper

look at the AWS architecture implemented to handle functions and data.

The architecture can be split into 2 sections:

• Event-driven calls from the frontend (static webpage in S3) to DynamoDB for data

retrieval or processing

• Periodic refresh of data in DynamoDB from the blockchain using EventBridge and

Lambda

5

2.1 Frontend connectivity to the backend

The first use case of the application is to read data from the database and perform simple

computation on data being sent from the user interface and save it persistently. The frontend

will send REST HTTP API requests to API Gateway, which will then trigger a Lambda Function

call. This function will either read values from DynamoDB to be sent back to the UI or save

and update values in the database. These 3 services combined handles user interaction and

user data storage of the application.

DynamoDB

Tables in DynamoDB were created to handle the data storage for the application and its

ability to handle unstructured data provides us with a flexible way to store incoming data

feeds.

CRUD data operations were performed on these tables through Lambda.

6

Lambda

Functions used by the application either read values from database or perform simple

computation before storing the values into the database.

A simple read function on Lambda would look like this:

As DynamoDB was used as the data storage provider for this application, interaction

between Lambda and the data layer was easily configured using the

AWS.DynamoDB.DocumentClient import. The document client import simplifies basic

operations on DynamoDB. The Lambda function uses the AWS SDK for JavaScript to query

and scan tables using these methods of the DynamoDB Document Client class - GET, PUT,

UPDATE, QUERY and DELETE.

To allow Lambda to perform these actions on DynamoDB, its execution role IAM policy had

to be updated.

7

API Gateway

API Gateway was used to manage the endpoints called by the application. In the Integration

Request section of the Method Execution in API Gateway, Lambda Function integration type

was used. The associated Lambda region and function were also selected in the Integration

Request.

All method call endpoints used by the application were added to API Gateway. Each

endpoint used the same Integration Request, only varying the Lambda Function invoked.

Functions invoked by the application through API Gateway were computed using Lambda.

As API Gateway was the function trigger, the Lambda design is as such,

Lambda functions invoked by API Gateway would have to update their policy to allow for this

function call to pass.

8

2.2 Periodic Data Refresh

Our application requires streaming of data constantly, which brings us to the second use

case of our backend design. To input data into the database, a Lambda function was created

to send API requests to the blockchain and write values to the database. As the function had

to be triggered continuously, an EventBridge was set up to handle this.

EventBridge

Before the EventBridge was set up, the Lambda function had to be created first. Once we

have that, we can proceed with creating a new Rule.

9

The smallest unit of time in an EventBridge Rule is 1 minute. This means the function is

triggered by EventBridge every minute. Once the rule has been created, it is now set as the

trigger for the Lambda function.

10

3. Lambda and DynamoDB Setup

AWS Lambda is a serverless compute service that lets us run code without provisioning or

managing servers. Lambda functions can be written in multiple languages (as the UI was

written in JavaScript, we stuck with JavaScript when coding the function). As cost is essential

to hosting a web server, using Lambda is favourable due to its pay-as-you-go setup without

the need to pre-provision infrastructure.

To create a Lambda function is simple:

In the previous section, we mentioned that Lambda would need explicit access to

DynamoDB and be allowed to be accessed by API Gateway — these policies should be

attached to the function.

Lambda also provides testing of its functions:

11

A test JSON object can be passed into the Lambda function. Once the test cases have been

configured, they can used to ensure the function is working as it should (the above example

is the test for a GET function, hence an empty JSON object is passed into the function).

4. Conclusion

With this set up in place, it is now quick and simple to add new API endpoints and functions

to the application. API Gateway also provides additional security to our APIs with

authentication and authorisation capabilities, allowing us to offload security and access

control to AWS API Gateway.

Using an event-driven serverless backend removes the need to host a dedicated backend for

the basic computation which brings down hosting costs and manpower costs for supporting

the services, allowing us to focus on development work. Additionally, it improves our

application uptime with minimal manpower needs since the service is managed entirely by

AWS.

Moving forward, we will be exploring the use of AWS Lambda Applications instead of

Functions to see what additional benefits serverless technologies can bring to rapid

prototyping and to explore an asynchronous update of blockchain data to the frontend with a

message queue rather than rely on a periodic polling approach using EventBridge rather than

rely on a periodic polling approach using EventBridge.

12

