FLSTNCS

Designed for Finance

| rototyplng with

\\- rless and Cloud

Transformative Technology for the Financial Industry

Contents

Rapid Prototyping with Serverless and Cloud Technology.......ccccccevueeiiiueeieenceieeneneennnne. 3
] £=) - T - SO OPPTRPPPPIN 3
1o INTFOAUCTION ..ttt rre e st e serassseaeessensssssssssenssssenssssanssssannes 3
2. High Level ArchiteCture DEeSIgNcuuiiiieiiiiiiiiiiiiiriereeeiereneeeteaeeerenscssensssssnssssnnes 4
2.1 Frontend connectivity to the backendccceueiriviiirieiiiiiiiiiiiiiniieerreeereenenennes 5

DY aF=Taale] B SRS 5
=10 0] o To - O PO UOTRTPPPPPPRRPPR: 6
APL GatEWAY euieniiiiiiiiiiiitiieiietiteeitteteerettatttereesasessenressscsssessasssssscsnsensaesncsnsansans 7
2.2 Periodic Data RefreSh.......cceuiiieiieic et ee e s e e e s naes 8
EVENTBIIAgE citueiiiieiitieeertee ettt et r e s s e e s rna s e eae s e eaeesennnssennnsannnsennnnns 8
3. Lambda and DyNamoDB SetUPcciuuiiiieiiiiiiiiiiiireeseeeeeseeeeeeaeeeeneesenneesennnnsens 10
A, CONCIUSION ..ceuiieiieitieetee et et re s e e s re s s ena s s rna s e rns s seanessenssssensssssnsssennnesennsnsennns 1

Rapid Prototyping with Serverless and Cloud
Technology

Preface

Rapid prototyping is an essential skill for a team running on Agile and Scrum methodologies.
Focusing on the deliverables, utilising available resources, and managing substantial and
quick modifications requires some finesse — this is what STACS Solutions Engineering team

aims to achieve.

We have built and launched large enterprise applications running on top of our STACS
Blockchain platform. To be more agile, we have started researching rapid prototyping to
collect feedback and increase our feature release and bug fix Turn Around Time (TAT). In the
project we are about to present in this article, the focus is set on user interaction and
experience. We have found that serverless technology like AWS Lambda is well suited to
handle the backend processing which enables the team to focus on the User Experience (UX)
to provide a better quality of life for users. This article will share our experience on rapid
prototyping where we utilise the AWS cloud services to iterate our build quickly which has

been very cost-effective.
1. Introduction

Serverless technology such as AWS Lambda is very useful for basic computational
processes and being event-driven allows us to save cost on running full-blown servers for

applications that do not have heavy workloads.

This prototype application uses 4 AWS services in its backend architecture -
1. DynamoDB for unstructured data storage
2. Lambda for event-driven basic computation
3. API Gateway to manage APl messages
4. EventBridge

We will look at the high-level architecture design, its use cases, why some of these
services were chosen and how they were implemented.

3

2. High Level Architecture Design

As the focus is on the serverless backend implementation of the project, let us take a deeper

look at the AWS architecture implemented to handle functions and data.

@

Lambda

Client .
API| Gateway Lambda DynamoDB EventBridge

I

CloudWatch

The architecture can be split into 2 sections:

° Event-driven calls from the frontend (static webpage in S3) to DynamoDB for data
retrieval or processing

o Periodic refresh of data in DynamoDB from the blockchain using EventBridge and
Lambda

2.1 Frontend connectivity to the backend

The first use case of the application is to read data from the database and perform simple
computation on data being sent from the user interface and save it persistently. The frontend
will send REST HTTP API requests to APl Gateway, which will then trigger a Lambda Function
call. This function will either read values from DynamoDB to be sent back to the Ul or save
and update values in the database. These 3 services combined handles user interaction and

user data storage of the application.

DynamoDB

Tables in DynamoDB were created to handle the data storage for the application and its
ability to handle unstructured data provides us with a flexible way to store incoming data

feeds.

Q Filter by table name X ~ || Actions + @

©
o
[}

Name + Status Partition key Sort key Indexes - Total read capacity Total write capacity Auto Scaling Encryption

Active DEFAULT

Active DEFAULT

o o o o o
a o o o o
I I R R

Active DEFAULT

CRUD data operations were performed on these tables through Lambda.

Lambda

Functions used by the application either read values from database or perform simple

computation before storing the values into the database.

A simple read function on Lambda would look like this:

Q B indexjs X
‘g v _ fo 1 const AWS = require('aws-sdk');
E 2 const ddb = new AWS.DynamoDB.DocumentClient({region: [HNG_G_—_———:
g index.js 3
E 4 exports.handler = async (event, context, callback) => {
w 5 anailt getTransaction().then(data => {
[data.Items. forEach(item => {
7 console. log(item);
g s
9 callbackCnull, {
1@ statusCode: 200,
11 body: data.Items,
12 headers: {
13 ‘Access-Control-Allow-Origin': '*',
14
15 }
1 16 B
17 }).catch(Cerr) == {
18 console. logCerr);
19 I3 H
20 1
21
22 const getTransaction = () => {
23 const params = {
24 Tablehame: I
25 H
26 return ddb.scan(params).promise();
27 3

As DynamoDB was used as the data storage provider for this application, interaction
between Lambda and the data layer was easily configured using the
AWS.DynamoDB.DocumentClient import. The document client import simplifies basic
operations on DynamoDB. The Lambda function uses the AWS SDK for JavaScript to query
and scan tables using these methods of the DynamoDB Document Client class - GET, PUT,
UPDATE, QUERY and DELETE.

To allow Lambda to perform these actions on DynamoDB, its execution role IAM policy had

to be updated.

API Gateway

API| Gateway was used to manage the endpoints called by the application. In the Integration
Request section of the Method Execution in APl Gateway, Lambda Function integration type
was used. The associated Lambda region and function were also selected in the Integration
Request.

€ Method Execution /— GET - Integration Request

Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type @® Lambda Function @
O HTTP @
© Mock @
© AWS Service @
O VPG Link @

Use Lambda Proxy integration Ce
Lambda Region _
Lambda Function _

Execution role
Invoke with caller credentials @
Credentials cache Do not add caller credentials to cache key

Use Default Timeout 2@

All method call endpoints used by the application were added to APl Gateway. Each

endpoint used the same Integration Request, only varying the Lambda Function invoked.

Functions invoked by the application through API Gateway were computed using Lambda.

As API Gateway was the function trigger, the Lambda design is as such,

v Designer
B
@ Layers ©)
EventBridge (CloudWatch Events) @

Lambda functions invoked by APl Gateway would have to update their policy to allow for this

function call to pass.

2.2 Periodic Data Refresh

Our application requires streaming of data constantly, which brings us to the second use
case of our backend design. To input data into the database, a Lambda function was created
to send API requests to the blockchain and write values to the database. As the function had

to be triggered continuously, an EventBridge was set up to handle this.

EventBridge

Before the EventBridge was set up, the Lambda function had to be created first. Once we

have that, we can proceed with creating a new Rule.
Name and description

Name

Maximum of 64 characters consisting of lower/upper case letters, ., -, _.

Description - optional

Define pattern

Build or customize an Event Pattern or set a Schedule to invoke Targets.

Event pattern Infe © Schedule info
Build a pattern to match events Invoke your targets on a schedule

Fixed rate ever
° y 1 Minutes v

CROM expression have six required fields, which are separated by white space. Learn more about

Cron expression
P CRON expression. [/} Enter CRON expression below to see the next 10 trigger date(s).

» Sample avent(s)

Select event bus

Select an event bus for this rule.

(i) Custom or partner event bus Is not supported when Schedule Is selected.

@ Enable the rule on the selected event bus

Select targets

Select target(s) to invoke when an event matches your event pattern or when schedule is triggered (limit of 5 targets
per rule)

Select target(s) to invoke when an event matches your event pattern or when schedule is triggered (limit of 5 targets per

rule)

Lambda function v

Function
L v

» Configure version/alias
» Configure input

P Retry policy and dead-letter queue

Add target

The smallest unit of time in an EventBridge Rule is 1 minute. This means the function is
triggered by EventBridge every minute. Once the rule has been created, it is now set as the

trigger for the Lambda function.

v Designer

B

@ Layers o)

EventBridge (CloudWatch Events) @

3. Lambda and DynamoDB Setup

AWS Lambda is a serverless compute service that lets us run code without provisioning or
managing servers. Lambda functions can be written in multiple languages (as the Ul was
written in JavaScript, we stuck with JavaScript when coding the function). As cost is essential
to hosting a web server, using Lambda is favourable due to its pay-as-you-go setup without

the need to pre-provision infrastructure.
To create a Lambda function is simple:

Basic information

Function name
Enter a name that describes the purpose of your function.

Use onlly letters, numbers, hyphens, or underscores with no spaces.

Runtime Info
Choose the language to use ta write your function.

Node js 14.x v

Permissions .

By default, Lambda wil

ault role later when adding triggers.

v Change default execution role
Execution role
Choose a role that defines the permissions of your function. To create a custom role, go to the IAM console.
© Create a new role with basic Lambda permissions
Use an existing role
Create a new role from AWS policy templates

@ Role ereation might take a few minutes. Please do not delete the role or edit the trust or permissions policies in this role.

Lambda will create an execution role named getPanel-role-n7s6kx8w, with permission to upload logs to Amazon CloudWatch Logs.

In the previous section, we mentioned that Lambda would need explicit access to
DynamoDB and be allowed to be accessed by APl Gateway — these policies should be

attached to the function.

Lambda also provides testing of its functions:

10

A test JSON object can be passed into the Lambda function. Once the test cases have been
configured, they can used to ensure the function is working as it should (the above example

is the test for a GET function, hence an empty JSON object is passed into the function).

4. Conclusion

With this set up in place, it is now quick and simple to add new API endpoints and functions
to the application. APl Gateway also provides additional security to our APIs with
authentication and authorisation capabilities, allowing us to offload security and access
control to AWS API Gateway.

Using an event-driven serverless backend removes the need to host a dedicated backend for
the basic computation which brings down hosting costs and manpower costs for supporting
the services, allowing us to focus on development work. Additionally, it improves our
application uptime with minimal manpower needs since the service is managed entirely by
AWS.

Moving forward, we will be exploring the use of AWS Lambda Applications instead of
Functions to see what additional benefits serverless technologies can bring to rapid
prototyping and to explore an asynchronous update of blockchain data to the frontend with a
message queue rather than rely on a periodic polling approach using EventBridge rather than

rely on a periodic polling approach using EventBridge.

11

Designed for Finance

Transformative Technology for the Financial Industry A’.
HSTACS
1

Contact

STACS
www.stacs.io
info@stacs.io

LA Jin Ser
_|Solutions Architect Director
jin.ser@stacs.io

